
ECE 307 – Techniques for Engineering Decisions

FINAL REVIEW

George Gross

**Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign**

PROBLEM 7.27

- We define the following notation

car A: outcome that the car is behind door *A*

similar definitions for *car B* and *car C*

- Then, $P\{\text{car } A\} = P\{\text{car } B\} = P\{\text{car } C\} = \frac{1}{3}$

which indicates that for the car to be behind any one of the 3 doors is equally likely

- I pick door *A* and the host knows where the car is;

PROBLEM 7.27

- We define the following notation

car A: outcome that the car is behind door A

- We introduce similar definitions for *car B* and *car C*
- Then,

$$P\{car A\} = P\{car B\} = P\{car C\} = \frac{1}{3}$$

which indicates that for the car to be behind any one of the 3 doors is equally likely

- I pick door *A* and the host knows where the car is;
the possible outcomes are:

PROBLEM 7.27

(i) car is behind door C

$$P\{host \text{ picks door } B \mid \text{car } C\} = 1$$

(ii) car is behind door A that I picked as my choice

$$P\{host \text{ picks door } B \mid \text{car } A\} =$$

$$P\{host \text{ picks door } C \mid \text{car } A\} = \frac{1}{2}$$

(iii) car is behind door B

$$P\{host \text{ picks door } B \mid \text{car } B\} = 0$$

PROBLEM 7.27

□ Now,

$$P\{car C \mid \text{host picks door } B\} =$$

$$\frac{P\{car C \text{ and host picks door } B\}}{P\{\text{host picks door } B\}} =$$

PROBLEM 7.27

$$\begin{aligned}
 & \underbrace{P\{host \text{ picks door } B \mid \text{car } C\}}_{1} \underbrace{P\{\text{car } C\}}_{(1/3)} \\
 & \hline
 & \left[P\{host \text{ picks door } B \mid \text{car } A\} \underbrace{P\{\text{car } A\}}_{(1/3)} + \right. \\
 & \quad \underbrace{P\{host \text{ picks door } B \mid \text{car } B\}}_{(1/2)} \underbrace{P\{\text{car } B\}}_{(1/3)} + \\
 & \quad \left. \underbrace{P\{host \text{ picks door } B \mid \text{car } C\}}_{0} \underbrace{P\{\text{car } C\}}_{(1/3)} \right] = \frac{2}{3}
 \end{aligned}$$

- Therefore, you should switch when the host reveals the goat

PROBLEM 9.26

- The inheritance can be invested entirely in *Mac* or in *USS* and we are given that

$$P\{\text{invested in } Mac\} = 0.8$$

and so

$$P\{\text{invested in } USS\} = 0.2$$

- Each year return on investment is normal with

$$R_{\sim Mac} \sim \mathcal{N}(14\%, 4\%)$$

$$R_{\sim USS} \sim \mathcal{N}(12\%, 3\%)$$

and the yearly returns are independent r.v.s

PROBLEMS 9.26 (a)

□ We compute then

$$P\{.06 < \tilde{R} < .18 \mid \text{investment in } Mac\}$$

$$= P\left\{ \frac{.06 - .14}{.04} < \tilde{Z} < \frac{.18 - .14}{.04} \right\}$$

$$= P\{-2 < \tilde{Z} < 1\}$$

$$= 0.8185$$

PROBLEMS 9.26 (a)

□ Similarly

$$P\{.06 < \tilde{R} < .18 \mid \text{investment in USS}\}$$

$$= P\left\{ \frac{6 - 12}{3} < \tilde{Z} < \frac{18 - 12}{.3} \right\}$$

$$= P\{-2 < \tilde{Z} < 2\}$$

$$= \mathbf{0.9544}$$

PROBLEM 9.26 (b)

□ Then, the unconditional probability is

$$P\{6 < \tilde{R} < 18\} = P\{6 < \tilde{R} < 18 | Mac\} P\{Mac\} +$$

$$P\{6 < \tilde{R} < 18 | USS\} P\{USS\}$$

$$= 0.8185(0.8) + 0.9544(0.2)$$

$$= 0.84568$$

PROBLEM 9.26 (c)

□ We are given $P\{\tilde{R} > 12\}$ and wish to find

$$P\{\text{investment in Mac} \mid \tilde{R} > 12\}$$

□ We compute

$$\begin{aligned} P\{\tilde{R} > 12 \mid \text{Mac}\} &= P\left\{\tilde{Z} > \frac{12 - 14}{4}\right\} = P\{\tilde{Z} > -0.5\} \\ &= \mathbf{0.6915} \end{aligned}$$

and

$$\begin{aligned} P\{\tilde{R} > 12 \mid \text{USS}\} &= P\left\{\tilde{Z} > \frac{12 - 12}{3}\right\} = P\{\tilde{Z} > 0\} \\ &= \mathbf{0.5} \end{aligned}$$

PROBLEM 9.26 (c)

□ Then $P\{\tilde{Mac} \mid \tilde{R} > 12\} =$

$$\frac{P\{\tilde{R} > 12 \mid \tilde{Mac}\} P\{\tilde{Mac}\}}{P\{\tilde{R} > 12 \mid \tilde{Mac}\} P\{\tilde{Mac}\} + P\{\tilde{R} > 12 \mid \tilde{USS}\} P\{\tilde{USS}\}}$$

$$= \frac{(0.6915)(0.8)}{(0.6915)(0.8) + (0.5)(0.2)}$$

$$= 0.847$$

PROBLEM 9.26 (d)

□ We are given that

$$P\{Mac\} = P\{USS\} = 0.5$$

□ Then,

$$E\{\tilde{R}\} = E\{\tilde{R}|Mac\}P\{Mac\} + E\{\tilde{R}|USS\}P\{USS\}$$

$$0.13 = 0.5\{0.14 + 0.12\}$$

and

$$\begin{aligned} var\{\tilde{R}\} &= (0.5)^2 var\{\tilde{R}|Mac\} + (0.5)^2 var\{\tilde{R}|USS\} \\ &= 0.25 \left\{ (0.04)^2 + (0.03)^2 \right\} \end{aligned}$$

$$0.0625 = (0.5)^2 (0.5)^2 \Rightarrow \sigma_{\tilde{R}} = 0.25$$

PROBLEM 9.31 (a)

- We know that the length r.v.

$$\tilde{L} \sim \mathcal{N}(5.9, 0.0365)$$

- We compute

$$P\{\text{not fit in a 6" envelope}\} = P\{\tilde{L} > 5.975\}$$

$$= P\left\{\tilde{Z} > \frac{5.975 - 5.9}{0.0365}\right\}$$

$$= P\{\tilde{Z} > 2.055\}$$

$$= \mathbf{0.02}$$

PROBLEM 9.31 (b)

- We have a box with $n = 20$ and a failure occurs whenever an envelope does not fit into a box:

$$P\{\text{no fit}\} = P\{\tilde{L} > 5.975\} = 0.02$$

- From the binomial distribution for $n = 20$ with $q = 0.02$ we compute the $P\{2 \text{ or more no fits}\}$
- The event of two or more no fits in a population of 20 is the event of 18 or less fits

PROBLEM 9.31 (b)

$$P\{\text{fit}\} = 1 - P\{\text{not fit}\} = 0.98$$

$$\begin{aligned} P\{\underbrace{\tilde{R} \leq 18}_{\text{number of fits out of 20}}\} &= P\{\underbrace{\hat{R} \geq 2}_{\text{number of no fits out of 20}}\} \\ &= 1 - P\{\hat{R} \leq 1\} \\ &= 1 - 0.94 \\ &= 0.06 \end{aligned}$$

PROBLEM 9.31 (b)

- The interpretation of the .06 is as follows: we have the result that we expect, on average, that 6 % of the boxes contain 2 or more cards that do not fit the envelopes

9.34

- On average, 7.5 people arrive in 30 minutes since

$$\frac{30 \text{ min}}{4 \text{ min} / \text{person}} = 7.5 \text{ persons}$$

and so we have the number of arriving people \tilde{X}
as an r.v. with

$$\tilde{X} \sim \text{Poisson}(m = 7.5)$$

- A simplistic way to solve the problem is to view the individual 40% preference of each arriving

9.34

**person to be independent of the arrivals and then
treat the number of arriving persons who prefer
the new recipe as a *r.v.* \tilde{P} with mean $(40\%)(7.5) = 3$
and so**

$$\tilde{P} \sim \text{Poisson}(m = 3)$$

□ Table look up produces

$$P\{\tilde{P} \geq 4\} = 0.353$$

9.34

- A more rigorous approach is to treat the performance of each arrival as a binomial

$$\tilde{X} = \text{number of arrivals in 30 minutes} \sim \text{Poisson}(m = 7.5)$$

- Each arrival i has a preference \tilde{P}_i for new recipe with

$$\tilde{P}_i \sim \text{binomial}(n = \tilde{X}, p = 0.4)$$

9.34

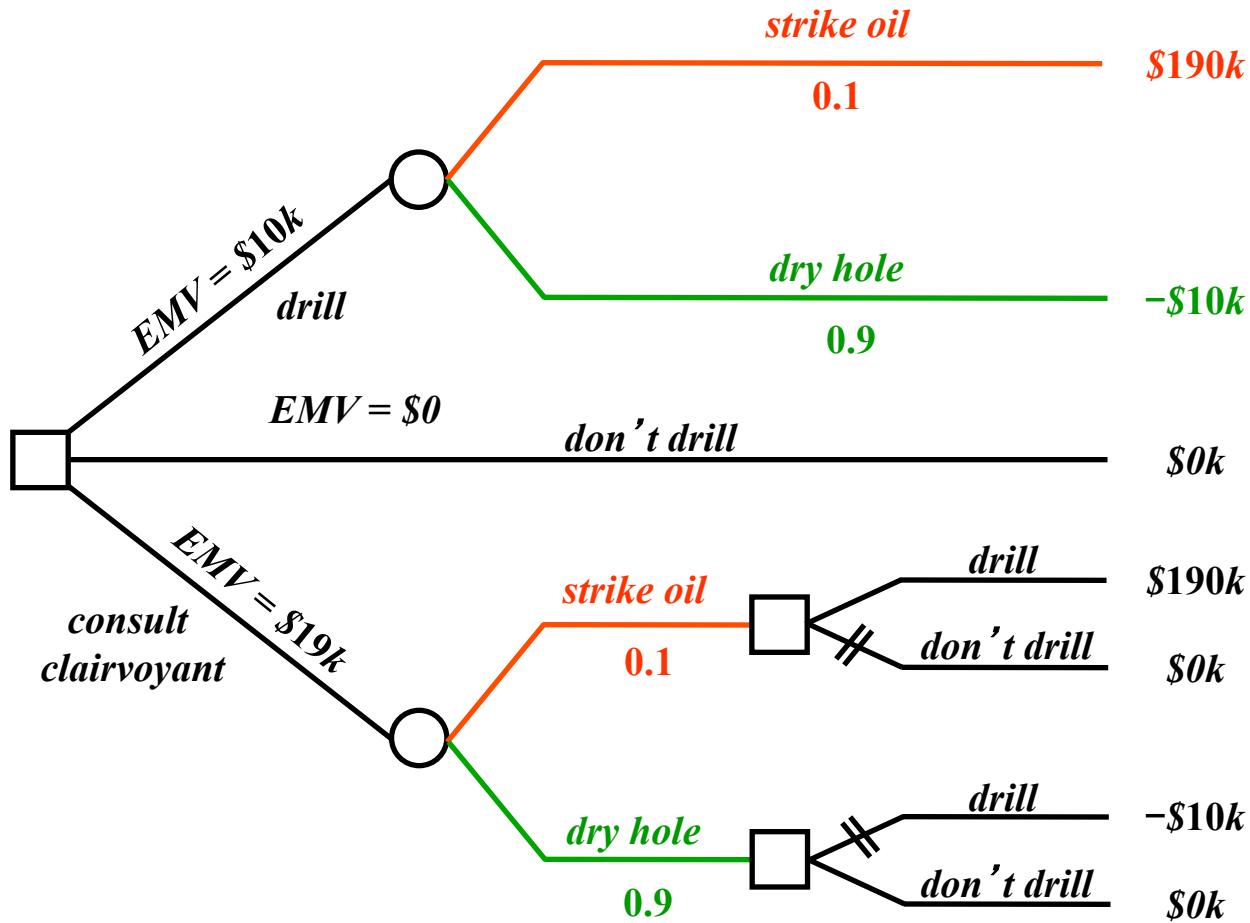
- We need to compute $P\left\{\sum_i \tilde{P}_i \geq 4\right\}$
- We condition over the number of arrivals

$$\begin{aligned} P\left\{\sum_i \tilde{P}_i \geq 4\right\} &= \sum_{n=1}^{\infty} P\left\{\sum_{i=1}^n \tilde{P}_i \geq 4 \mid \tilde{X} \geq n\right\} P\left\{\tilde{X} = n\right\} \\ &= P\left\{\sum_{i=1}^4 \tilde{P}_i \geq 4 \mid \tilde{X} \geq 4\right\} P\left\{\tilde{X} = 4\right\} + \\ &\quad P\left\{\sum_{i=1}^5 \tilde{P}_i \geq 4 \mid \tilde{X} \geq 5\right\} P\left\{\tilde{X} = 5\right\} + \\ &\quad P\left\{\sum_{i=1}^6 \tilde{P}_i \geq 4 \mid \tilde{X} \geq 6\right\} P\left\{\tilde{X} = 6\right\} + \dots \end{aligned}$$

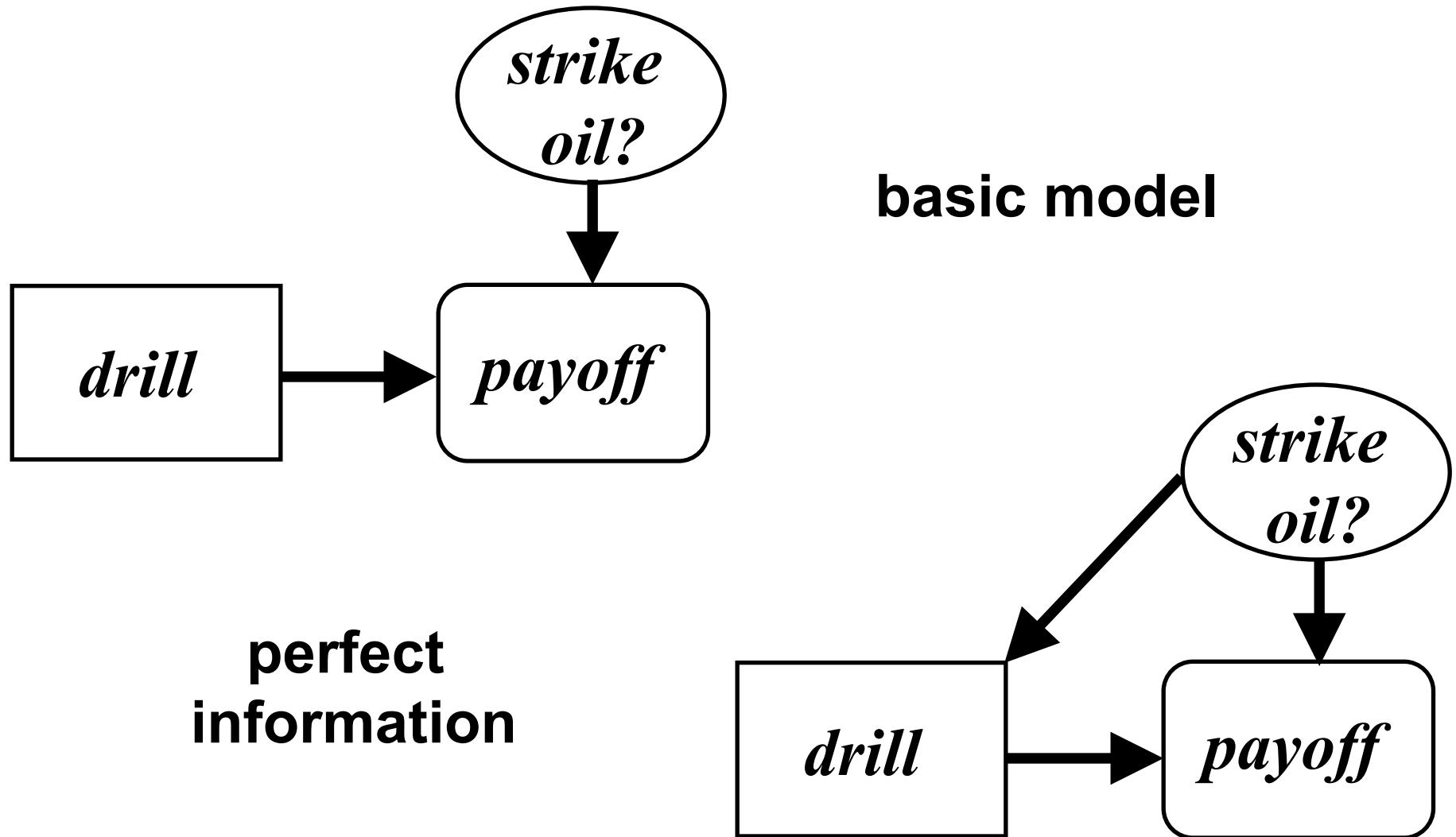
9.34

- Note that $P\left\{\sum_{i=1}^n P_i \geq 4 \mid \tilde{x} \geq 4\right\} P\{\tilde{X} = n\}$ is simply the binomial distribution value with parameters $(n, 0.4)$ and $P\{\tilde{X} = n\}$ is the Poisson distribution value with $m = 7.5$

12.7: OIL WILDCATTING PROBLEM: DECISION TREE



12.7: BLOCK DIAGRAMS



12.7 *EVPI AND EVII*

- We evaluate the expected value of the clairvoyant information

$$EVPI = \underbrace{EMV(\text{clairvoyant})}_{\$19k} - \underbrace{EMV(\text{drill})}_{\$10k} = \$9k$$

- We have the following conditional probabilities

$$P\{\text{"good"} \mid \text{oil}\} = 0.95 \text{ and } P\{\text{"poor"} \mid \text{dry}\} = 0.85$$

- We are also given that

$$P\{\text{dry}\} = 0.9 \text{ and } P\{\text{oil}\} = 0.1$$

- We can find $P\{\text{"good"}\}$ and $P\{\text{"poor"}\}$ with the

12.7 *EVPI AND EVII*

law of total probability

$$P \{ \text{“good”} \} = P \{ \text{“good”} \mid \text{oil} \} P \{ \text{oil} \} \quad +$$

$$P \{ \text{“good”} \mid \text{dry} \} P \{ \text{dry} \} \quad =$$

$$(0.95) (0.1) + (0.15) (0.9) = 0.23$$

$$P \{ \text{“poor”} \} = 1 - P \{ \text{“good”} \} = 1 - 0.23 \quad = \quad 0.77$$

12.7 *EVPI AND EVII*

□ Now we can find

$$\begin{aligned} P\{oil | "good"\} &= \frac{P\{"good" | oil\} P\{oil\}}{\left[P\{"good" | oil\} P\{oil\} + \right.} \\ &\quad \left. \left[P\{"good" | dry\} P\{dry\} \right] \right] \\ &= \frac{(0.95)(0.1)}{(0.95)(0.1) + (0.15)(0.9)} \\ &= 0.41 \end{aligned}$$

$$P\{dry | "good"\} = 1 - P\{oil | "good"\} = 0.59$$

12.7 *EVPI AND EVII*

and

$$\begin{aligned} P\{oil | "poor"\} &= \frac{P\{"poor" | oil\} P\{oil\}}{\left[P\{"poor" | oil\} P\{oil\} + \right.} \\ &\quad \left. \left[P\{"poor" | dry\} P\{oil\} \right] \right] \\ &= \frac{(0.05)(0.1)}{(0.05)(0.1) + (0.85)(0.9)} \\ &= \mathbf{0.0065} \end{aligned}$$

10.12: PROBLEM FORMULATION

- This is a multi-period planning problem with a 7-month horizon
- Define the following for use in backward regression
 - stage: a month in the planning period
 - state variable: the number of crankcases S_n left over from the stage $(n - 1)$, $n = 1, 2, \dots, N$ with $S_7 = 0$ (*initial stage*) and S_0 *unspecified*

10.12: PROBLEM FORMULATION

- decision variables: purchase amount d_n for stage n , $n = 1, 2, \dots, 7$
- transition function: the relationship between the amount in inventory, purchase decision and demand in stages n and $(n - 1)$

$$S_{n-1} = S_n + d_n - D_n \quad n = 1, 2, \dots, N$$

where,

D_n = demand at stage n $n = 1, 2, \dots, N$

10.12: PROBLEM FORMULATION

- return function: costs of purchase in stage n
plus the inventory holding costs, with the
mathematical expression

$$f_n^*(S_n) = C_n + (S_n + d_n - D_n) \cdot 0.50 + f_{n-1}^*(S_{n-1})$$

costs of lot size ordered *per unit inventory charges*

and

$$f_0^*(S_0) = 0$$

10.12: STAGE 1 SOLUTION

$$D_1 = 600$$

$$f_1^*(S_1) = \min_{d_1} \{C_1 + (S_1 + d_1 - D_1)0.50\}$$

S ₁	value of f ₁ for d ₁				f ₁ [*] (S ₁)	d ₁ [*]
	0	500	1000	1500		
0			5200	7950	5200	1000
100		3000	5250	8000	3000	500
200		3050	5300	8050	3050	500
300		3100	5350	8100	3100	500
400		3150	5400	8150	3150	500
500		3200	5450	8200	3200	500
600	0	3250	5500	8250	0	0

10.12: STAGE 2 SOLUTION

$$D_2 = 1200$$

$$f_2^*(S_2) = \min_{d_2} \left\{ C_2 + (S_2 + d_2 - D_2)0.50 + f_1^*(S_2 + d_2 - D_2) \right\}$$

S ₂	value of f ₂ for d ₂				f ₂ [*] (S ₂)	d ₂ [*]
	0	500	1000	1500		
0				10750	10750	1500
100				10850	10850	1500
200			10200	10950	10200	1000
300			8050	7800	7800	1500
400			8150		8150	1000
500			8250		8250	1000
600			8350		8350	1000

10.12: STAGE 3 SOLUTION

$$D_3 = 900$$

$$f_3^*(S_3) = \min_{d_3} \left\{ C_3 + (S_3 + d_3 - D_3) 0.50 + f_2^*(S_3 + d_3 - D_3) \right\}$$

S ₃	value of f ₃ for d ₃				f ₃ [*] (S ₃)	d ₃ [*]
	0	500	1000	1500		
0			15900	16150	15900	1000
100			15300		15300	1000
200			12950		12950	1000
300			12350		13350	1000
400		11050	13500		11050	500
500		13900	13650		13650	1000
600		13300			13300	500

10.12: STAGE 4 SOLUTION

$$D_4 = 400$$

$$f_4^*(S_4) = \min_{d_4} \left\{ C_4 + (S_4 + d_4 - D_4) 0.50 + f_3^*(S_4 + d_4 - D_4) \right\}$$

S ₄	value of f ₄ for d ₄				f ₄ [*] (s ₄)	d ₄ [*]
	0	500	1000	1500		
0		18350	18600		18350	500
100		16050			16050	500
200		16500			16500	500
300		14250			14250	500
400	15900	16900			15900	0
500	15350	16600			15350	0
600	13050				13050	0

10.12: STAGE 5 SOLUTION

$$D_5 = 800$$

$$f_5^*(S_5) = \min_{d_5} \left\{ C_5 + (S_5 + d_5 - D_5) 0.50 + f_4^*(S_5 + d_5 - D_5) \right\}$$

S ₅	value of f ₅ for d ₅				f ₅ [*] (S ₅)	d ₅ [*]
	0	500	1000	1500		
0			21600		21600	1000
100			19400		19400	1000
200			21100		21100	1000
300		21350	20600		20600	1000
400		19100	18350		18350	1000
500		19600			19600	500
600		17400			17400	500

10.12: STAGE 6 SOLUTION

$$D_6 = 1100$$

$$f_6^*(S_6) = \min_{d_6} \left\{ C_6 + (S_6 + d_6 - D_6) 0.50 + f_5^*(S_6 + d_6 - D_6) \right\}$$

S ₆	value of f ₆ for d ₆				f ₆ [*] (S ₆)	d ₆ [*]
	0	500	1000	1500		
0				26050	26050	1500
100			26650	27350	26650	1000
200			24500	25200	24500	1000
300			26250		26250	1000
400			25800		25800	1000
500			21300		21300	1000
600		24600	20650		20650	1000

10.12: STAGE 7 SOLUTION

- For stage 7, $D_7 = 700$ and

$$f_7^*(S_7) = \min_{d_7} \left\{ C_7 + (S_7 + d_7 - D_7)0.50 + f_6^*(S_7 + d_7 - D_7) \right\}$$

- Optimal total cost over 7 months = \$ 31,400

obtained using the purchasing policy below

<i>month</i>	1	2	3	4	5	6	7
<i>amount of material</i>	1000	1000	1000	0	1000	1500	500

10.14 (a): PROBLEM FORMULATION

- The problem is a transportation problem which is a special case *LP*

$$\min Z = \min \sum_{j=1}^4 \sum_{i=1}^6 c_{ij} x_{ij}$$

s.t.

$$\sum_{i=1}^6 x_{ij} = 1 \quad \forall j = 1, \dots, 4$$

$$\sum_{i=1}^6 \sum_{j=1}^4 x_{ij} = 4$$

$$x_{ij} \in \{0, 1\}$$

10.14 (b): DP SOLUTION

Define the following:

- stage: car numbers $n = 1, 2, 3, 4$
- state variable s_n : vector whose dimension is
 - the number of unassigned markets with each component corresponding to the number of the unassigned market

10.14 (b): DP SOLUTION

- **decision variable:** unassigned market d_n , a component of \underline{s}_n , with $1 \leq d_n \leq 6$, $n = 1, \dots, 4$
- **stage n costs:** costs $r_n(d_n)$ of assigning the car n to the market d_n
- **return function:** total costs at stage n

$$f_n^*(\underline{s}_n) = \min_{d_n} \left\{ r_n(d_n) + f_{n-1}^*(\underline{s}_{n-1}) \right\}$$

where

10.14 (b): DP SOLUTION

d_n is a component of \underline{s}_n

\underline{s}_{n-1} is the reduced vector obtained from \underline{s}_n
by removing d_n

○ objective:

$\min Z = \sum_{n=1}^4 r_n(d_n)$, d_n is a component of \underline{s}_n , $n = 1, 4$

○ transition relationship: \underline{s}_{n-1} is the reduced
vector obtained from \underline{s}_n by removing the
component d_n

10.14 (b): STAGE 1 SOLUTION

□ In stage 1, we allocate car 1, having already

allocated 3 markets to the other 3 cars

□ Consequently, there are

$$\frac{6!}{3!3!} = 20$$

possible states \underline{s}_1 for which to make a decision

10.14 (b): STAGE 1 SOLUTION

state number	ξ_1	value of f_1 for decision d_1						d_1^*	f_1^*
		1	2	3	4	5	6		
1	[1,2,3]	7	12	9				1	7
2	[1,2,4]	7	12		15			1	7
3	[1,2,5]	7	12			8		1	7
4	[1,2,6]	7	12				14	1	7
5	[1,3,4]	7		9	15			1	7
6	[1,3,5]	7		9		8		1	7
7	[1,3,6]	7		9			14	1	7
8	[1,4,5]	7			15	8		1	7
9	[1,4,6]	7			15		14	1	7
10	[1,5,6]	7				8	14	1	7
11	[2,3,4]		12	9	15			3	9
12	[2,3,5]		12	9		8		5	8
13	[2,3,6]		12	9			14	3	9
14	[2,4,5]		12		15	8		5	8
15	[2,4,6]		12		15		14	2	12
16	[2,5,6]		12			8	14	5	8
17	[3,4,5]			9	15	8		5	8
18	[3,4,6]			9	15		14	3	8
19	[3,5,6]			9		8	14	5	9
20	[4,5,6]				15	8	14	5	8

10.14 (b): STAGE 2 SOLUTION

- In stage 2, we assign car 2 having already assigned cars 4 and 3 to two of the six markets

- The number of possible states \underline{s}_2 is

$$\frac{6!}{2!4!} = 15$$

- For each state \underline{s}_2 , we compute

$$f_2^*(\underline{s}_2) = \min_{d_2} \left\{ r_2(d_2) + f_1^*(\underline{s}_1) \right\},$$

d_2 is a component of \underline{s}_2

\underline{s}_1 is the reduced vector not containing d_2

10.14 (b): STAGE 2 SOLUTION

state number	s_2	value of f_2 for decision d_2						d_2^*	f_2^*
		1	2	3	4	5	6		
1	[1, 2, 3, 4]	14	17	12	19			3	12
2	[1, 2, 3, 5]	13	17	12		13		3	12
3	[1, 2, 3, 6]	14	17	12			20	3	12
4	[1, 2, 4, 5]	13	17		19	13		1, 5	13
5	[1, 2, 4, 6]	17	17		19		20	1, 2	17
6	[1, 2, 5, 6]	13	17			13	20	1, 5	13
7	[1, 3, 4, 5]	13		12	19	13		3	12
8	[1, 3, 4, 6]	14		12	19		20	3	12
9	[1, 3, 5, 6]	13		12		13	20	3	12
10	[1, 4, 5, 6]	13			19	13	20	1, 5	13
11	[2, 3, 4, 5]		18	13	20	15		3	13
12	[2, 3, 4, 6]		19	17	21		22	3	17
13	[2, 3, 5, 6]		18	13		15	21	3	13
14	[2, 4, 5, 6]		18		20	18	21	2, 5	18
15	[3, 4, 5, 6]			13	20	15	21	3	13

10.14 (b): STAGE 3 SOLUTION

- In stage 3, we assign car 3 having already assigned car 4 to one of the six markets
- The number of possible states in stage 3 is

$$\frac{6!}{5!1!} = 6$$

- For each state \underline{s}_3 , we compute

$$f_3^*(\underline{s}_3) = \min_{d_3} \left\{ r_3(d_3) + f_2^*(\underline{s}_2) \right\},$$

d_3 is a component of \underline{s}_3

\underline{s}_2 is the reduced vector not containing d_3

10.14 (b)

state number	s_3	value of f_3 for decision d_3						d_3^*	f_3^*
		1	2	3	4	5	6		
1	[1, 2, 3, 4, 5]	21	22	20	28	19		5	19
2	[1, 2, 3, 4, 6]	25	22	24	28		2	2	22
3	[1, 2, 3, 5, 6]	21	22	30		19	24	5	19
4	[1, 2, 4, 5, 6]	26	23		29	24	25	2	23
5	[1, 3, 4, 5, 6]	21		20	28	19	24	5	19
6	[2, 3, 4, 5, 6]		23	25	29	24	25	2	23

10.14 (b): STAGE 4 SOLUTION

- In stage 4, car 4 is assigned to the market with the lowest return for all markets
- There is a single state $\underline{s}_1 = [1, 2, 3, 4, 5, 6]$ for which the optimal decision d_4^* is determined

s_4	<i>value of f_4 for decision d_4</i>						d_4^*	f_4^*
	1	2	3	4	5	6		
[1, 2, 3, 4, 5, 6]	32	30	31	33	29	30	5	29

10.14 (b): THE OPTIMAL SOLUTION

<i>car</i>	<i>market</i>	<i>cost</i>
4	5	7
3	4	10
2	3	5
1	1	7
<i>total costs</i>		29